skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Boumal, Nicolas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A method is proposed to reconstruct the 3D molecular structure from micrographs collected at just one sample tilt angle in the random conical tilt scheme in cryo-electron microscopy. The method uses autocorrelation analysis on the micrographs to estimate features of the molecule which are invariant under certain nuisance parameters such as the positions of molecular projections in the micrographs. This enables the molecular structure to be reconstructed directly from micrographs, completely circumventing the need for particle picking. Reconstructions are demonstrated with simulated data and the effect of the missing-cone region is investigated. These results show promise to reduce the size limit for single-particle reconstruction in cryo-electron microscopy. 
    more » « less
  2. We consider semidefinite programs (SDPs) with equality constraints. The variable to be optimized is a positive semidefinite matrix X of size n. Following the Burer‐Monteiro approach, we optimize a factor Y of size n × p instead, such that X = YYT. This ensures positive semidefiniteness at no cost and can reduce the dimension of the problem if p is small, but results in a nonconvex optimization problem with a quadratic cost function and quadratic equality constraints in Y. In this paper, we show that if the set of constraints on Y regularly defines a smooth manifold, then, despite nonconvexity, first‐ and second‐order necessary optimality conditions are also sufficient, provided p is large enough. For smaller values of p, we show a similar result holds for almost all (linear) cost functions. Under those conditions, a global optimum Y maps to a global optimum X = YYT of the SDP. We deduce old and new consequences for SDP relaxations of the generalized eigenvector problem, the trust‐region subproblem, and quadratic optimization over several spheres, as well as for the Max‐Cut and Orthogonal‐Cut SDPs, which are common relaxations in stochastic block modeling and synchronization of rotations. © 2018 Wiley Periodicals, Inc. 
    more » « less
  3. We consider semidefinite programs (SDPs) of size n with equality constraints. In order to overcome scalability issues, Burer and Monteiro proposed a factorized approach based on optimizing over a matrix Y of size nk such that X = Y Y  is the SDP variable. The advantages of such formulation are twofold: the dimension of the optimization variable is reduced, and positive semidefiniteness is naturally enforced. However, optimization in Y is non-convex. In prior work, it has been shown that, when the constraints on the factorized variable regularly define a smooth manifold, provided k is large enough, for almost all cost matrices, all second-order stationary points (SOSPs) are optimal. Importantly, in practice, one can only compute points which approximately satisfy necessary optimality conditions, leading to the question: are such points also approximately optimal? To answer it, under similar assumptions, we use smoothed analysis to show that approximate SOSPs for a randomly perturbed objective function are approximate global optima, with k scaling like the square root of the number of constraints (up to log factors). Moreover, we bound the optimality gap at the approximate solution of the perturbed problem with respect to the original problem. We particularize our results to an SDP relaxation of phase retrieval. 
    more » « less